Local Community Detection Based on Small Cliques
نویسندگان
چکیده
Community detection aims to find dense subgraphs in a network. We consider the problem of finding a community locally around a seed node both in unweighted and weighted networks. This is a faster alternative to algorithms that detect communities that cover the whole network when actually only a single community is required. Further, many overlapping community detection algorithms use local community detection algorithms as basic building block. We provide a broad comparison of different existing strategies of expanding a seed node greedily into a community. For this, we conduct an extensive experimental evaluation both on synthetic benchmark graphs as well as real world networks. We show that results both on synthetic as well as real-world networks can be significantly improved by starting from the largest clique in the neighborhood of the seed node. Further, our experiments indicate that algorithms using scores based on triangles outperform other algorithms in most cases. We provide theoretical descriptions as well as open source implementations of all algorithms used.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملPartitioning Networks into Cliques: A Randomized Heuristic Approach
In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called t...
متن کاملSequential algorithm for fast clique percolation.
In complex network research clique percolation, introduced by Palla, Derényi, and Vicsek [Nature (London) 435, 814 (2005)], is a deterministic community detection method which allows for overlapping communities and is purely based on local topological properties of a network. Here we present a sequential clique percolation algorithm (SCP) to do fast community detection in weighted and unweighte...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملDetermining the Likelihood of Damage in Concrete and its Physical Structure
Applying renormalization group theory to evaluate the safety of overall structure, local damage probability must be obtained at first. According to the results of unit detection test and numerical simulation, the methods how to determine local damage probability was presented in the paper. For small unit, meaning the unit size is far less than the maximum primitive cell or the structure size, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Algorithms
دوره 10 شماره
صفحات -
تاریخ انتشار 2017